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Abstract. The expressions for electromagnetic potentials and fields of a charged particle 
in arbitrary motion in terms of simultaneous characteristics of the motion have been derived 
with the help of the Lagrange expansion for a retarded function. The expressions do not 
contain expansions in powers of the ratio u/c, and hence they are effective for particles with 
arbitrarily high velocities. The derived expressions may be useful in classical field theory 
and may serve as a starting point for development of a non-quantal relativistic statistical 
mechanics. 

1. Introduction 

Due to the finite speed of propagation the field of a charged particle is defined by its 
position, velocity and acceleration at a previous moment of time, ie in a system of many 
particles different ‘times’ should be used for different particles. This means it is impossible 
to describe a state of a system of charged particles in a phase space of their coordinates 
and momenta, so that one should introduce independent degrees of freedom for the 
electromagnetic field. Therefore the equations of motion for the particles should be 
supplemented with the equations of the field (quantized) which makes consideration 
of electromagnetic systems rather complicated. It is particularly difficult to develop 
a relativistic statistical theory when one needs a common time for all particles to describe 
the evolution of the system. 

However, as is shown in this paper, the electromagnetic field of a particle can be 
expressed in terms of its position, velocity and time derivatives of the velocity at simul- 
taneous and not at previous moments of time. It is not necessary then to introduce 
independent degrees of freedom for the field, and states of the system can be completely 
described in a phase space of coordinates, momenta and time derivatives of the momenta 
(we call them ‘accelerations’) of the particles only. Such a description is especially 
appropriate for statistical or kinetic theories because it allows one to use a common 
laboratory time for all particles. 

Another advantage of this approach is the possibility of restricting oneself to a 
numerable set of variables for a system ofinteracting particles. When the field is described 
independently, one should deal with a continuum of the field variables (say, potentials 
defined at each point of space), and it is quantization that usually results in a numerable 
set of the field oscillations. The proposed approach in a sense can be an alternative 

t Now at Department of Physics, Patrice Lumumba People’s Friendship University, 3 Ordjonikidze Str., 
Moscow, USSR. 

1048 
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to the quantum one. Although it is not clear how these two methods of description are 
interrelated, the non-quantal relativistic theory itself seems to be justified from theoretical 
as well as from practical points of view (Schwinger 1949, Hakim 1967). 

The value of the expressions derived below is due to the fact that they do not contain 
expansions in powers of the ratio v/c, where U and c are speeds of particle and light 
respectively. Therefore, these expressions are very general and can be used for a particle 
travelling arbitrarily fast even when its velocity is close to that of light (ultra-relativistic 
case). These expressions contain only series, in powers of accelerations of different 
orders. 

Since the expressions for potentials and fields include the universal laboratory time 
common for all particles, they are not manifestly covariant. However, they result from 
expansions of solutions to the covariant Maxwell equations, and this implies their 
actual independence of the choice of the frame of reference. Since, in statistical con- 
sideration, time plays a very important role due to irreversibility of processes in a system, 
there is no need to insist on the covariant form of the theory where time is just one of 
the four coordinates. Some loss of mathematical elegance is compensated for, in the 
author's opinion, by the physical clarity and simplicity of the expressions derived. 
Moreover, it is possible, when desirable, to rewrite these expressions in explicit covariant 
form as illustrated in 0 3 for the case of the radiative reaction force. 

2. m e  simultaneous expansions for retarded potentials and fields 

The electromagnetic field of a charge e in arbitrary motion is defined at a point with 
coordinates x at a moment of time t by the following LiCnard-Wiechert potentials : 

Here, R' is the magnitude of the vector R' = x-x(t') from the charge to the point of 
observation x at a previous moment of time t', x(t') being the coordinates of the charge 
at that moment ; n' = R/R'  is a unit vector along R' = R(t'), and 8' = tr(t')/c is the ratio 
of the velocity of the charge to the speed of light. The moment of time t' is defined by 
the causality condition 

c 

The corresponding fields E and H can be found by differentiation of 4 and A with 
respect to the coordinates x, y, z, of the point of observation x and the time of observation 
t according to the relations 

H = V X A .  1 a A  E = -- --V4 
c at (3) 

These differentiations are not straightforward because r$ and 4 depend on t' according 
to ( l ) ,  and their implicit dependence on x, y, z, t, is defined by the condition (2). 

The calculation of the previous position and velocity of the particle is a difficult 
problem for an arbitrary law of motion x(t), because the condition (2) contains the 
unknown distance R(t'). Fortunately, there exists an expansion (first obtained by 
Lagrange) that permits one to express a retarded function as an infinite series, all terms 
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of which are defined at simultaneous and not at previous moments of time. For an 
arbitrary function u(t') of the retarded time t' such an expression has a form (eg Smart 
1953 or Wintner 1947) 

m (-1)" dk-1 du 
k =  1 ckk! dtk-' ( Rkdl) ' 

u(t') = u(t)+ 1 __ ___ (4) 

where now in the right-hand side R = Ix-x(t)l is the simultaneous separation of the 
particle from the point of observation. 

The series in (4) can be rewritten in the form : 

u{t')= k = O  f q$[(qku(1-3], 
if one takes into account that 

dR 
dt 

- - n .  U, _ _ -  

n = R/R being the unit vector from the particle to the point of observation, and v the 
velocity of the particle, both simultaneous with the observation. 

To simplify the formulae we shall use a special system of units where the speed of 
light c = 1, or introduce instead of time t the relativistic 'time coordinate' xo = ct. In 
these units the Lienard-Wiechert potentials (1 )  can be written with the aid of Lagrange's 
expansion (5) in the form : 

( 7 )  

The corresponding expressions for fields can be found from ( 7 )  by means of the 

m ( -  1 ) k  dkRk-1 ( -  l)k dk(Rk-'u) 
dtk ' 

# J = e C - - - - -  A = e I - - - - -  
k = O  k !  dtk ' k = o  k! 

differentiations (3) : 

O0 (-l)k dk 
E = e - -rRk-2 [ n -k(n .u) l ) ,  

( - l ) k  dk 
k z 0  k! dtk 

k = O  k! d tk '  

H = e 1 -  -[Rk-'(k- l)(n x U)]. 

With the help of the Leibnitz formula for the kth derivative of the product of two 
functions one can present the expression for the vector potential A in (7) as a double 
sum : 

k 
where U = dku/dtk is the 'acceleration' of the particle of the kth order. 

If we define now the 'scalar potential of the kth order' & by the following relation 

we can express the electromagnetic potentials in terms of these & : 
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The analogous transformation of the expressions (8) for fields permits one to present 
them in the following form : 

where 

and the index above a letter denotes the derivative with respect to 'time' ct of the cor- 
responding order, eg 

since R = x-x( t ) .  
The coefficients 4k and Ck in expansions (10) and (11 )  for potentials and fields 

contain accelerations of the particle according to (9) and (12), since the separation of 
the charge from the observation point R = Ix - x(t)l depends on time through the variable 
vector x( t )  which characterizes the motion of the particle. With the help of the expression 
for the mth derivative of a composite function (eg Gradshteyn and Ryzhik 1965) one can 
rewrite the expression (9) for 4 k  in the following form : 

( - 1 ) m + p  aPRm+k-i q - 1  

& =  e m = O  1 & j !  . . .  h !  aRP d(&.  ($), (13) 

where the second sum is to be performed over all positive integers k, j, . . . , h that satisfy 
the equations : 

i+2 j+ . . .+qh  = m (14) 
i+  j + .  . . + h  = p .  (15) 

To simplify the formulae we have introduced in (13) the following notations for 
tensors of corresponding ranks in the usual three-dimensional coordinate space : 

RP = R,Rb.. . R,, (by' = k,bb * t . k,, a,b , . . . ,  C =  1,2,3. - p times 

For instance, dpRm+k-l /dRP is a tensor of rank p, and the condition (15) makes f#+ 

in (13) scalar quantities as they should be. It is evident that the same transformation 
can be performed on the expression (12) as well. 

We have almost achieved our purpose now, but the expression (13) suffers in a sense 
because it includes an expansion in powers of U (ie in powers of the ratio v/c). This is 
undesirable if one prefers not to restrict oneself to the case of a relatively low speed 
of the particle that originates the field. We want to have a theory appropriate for 
arbitrarily fast particles even when U -+ 1 ( U  -+ c in usual units). This is especially 
important for statistical and kinetic theories where no restrictions on the possible 
magnitudes of velocities can be imposed. 
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It is possible to find more compact expressions, containing no expansions in powers 
of v,  if we make use of the fact that, for a particle in uniform motion, its field can be 
expressed in terms of its simultaneous, and not retarded, position and velocity. The 
corresponding expression for the scalar potential is (eg Jackson 1963): 

e 
= R [ l - U Z + ( n . v ) y ’  (16) 

where the unit vector of direction n is the same as in ( 5 )  and it is taken at the moment 
of observation. 

The corresponding transformations are indirect and rather lengthy, and they are 
given in the appendix- The result is : 

m 

4 k  = e C (-I)mRm+k-lBF, 
m = O  

where 

. . .  

i + 2 j + .  . . + q h  = m 

i+ j + .  . . + h  = s. 

Here, the scalar functions of coordinates and velocity of the particle a)&, U) are : 

nk akao y k + 2 [ Z + ( i + ~ 2 ) 1 / Z ] k + 1  
a),=--- - 

y k .  auk (1 + z y  

where we use the relativistic notation y = (1  - u 2 ) - l i 2  and put z = y (n .  U) = n. U, U 
being the spatial components of the four-velocity of the particle. 

The expression (17) shows that f$k are infinite series in increasing powers of the 
distance R. It is seen from (19) that the total order of time derivatives of the velocity 
(‘accelerations’) in each term Br of the series is m, while (20) provides the scalar character 
of these B;: (cf (1  3)). 

Substitution from (17) into (10) gives finally the following expressions for the electro- 
magnetic potentials : 

4 = e ( -  l)mRm-lBG, A = e  C ( - lyRm- lam,  

(22) 
m = O  m = O  

m k 
V 

a,,, = BT-k- 
k = O  k ! ’  

with BI: from (18). The total order of time derivatives of the velocity U in um is also m. 
The analogous consideration of the expressions (1 1) for fields yields in the folIowing 

formulae : 

E = e ( - l y ’ E j ,  H =  e (-ly’Hj.. 
j = O  j = O  
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where 

E[( j -  9/21 being the integral part of (j- i)/2. Here, the scalar functions C/ are connected 
with Ck from (12) in the following way : 

They can be presented in the following general form : 

that is analogous to (18) to the same restrictions (19) and (20) on the indices of the sum- 
mation i, j ,  . . . , h. The expressions for the scalar functions Rk(R, U) can be found by 
analogy with (21). They are 

It is seen from (23), (24) and (25) that 

( E i ,  H i }  - Ri-', 

and that the total order of time derivatives of the velocity in E i ,  Hi is i .  Note that the 
partial differentiation with respect to U in (18) and (24) does not influence dependence 
on R because it is to be performed at R = constant. 

3. Discussion 

The expressions (22) and (23) for potentials and fields of the particle respectively give 
the desirable expansions in terms of simultaneous characteristics of its motion. They 
imply no restrictions on the magnitude of the velocity of the particle, and they can be 
used in a non-quantal relativistic statistical mechanics in the form of Klimontovich 
(1960) and Hakim (1967)-that will be done elsewhere. 

We now discuss some applications of these formulae to classical electrodynamics. 
First of all, it is seen from (23) that the terms Eo and H ,  corresponding t o j  = 0 do not 
contain accelerations at all, and their dependence on the distance is R-'.  In explicit 
form they are 

(26) E,  = - eC; 'R,  Ho = eC; ' R  x U, 

and the substitution for C; ' = R -  from (25) according to (24) gives 

These are nothing but the fields of a charge in uniform motion (eg Jackson 1963). 
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These formulae also permit one to calculate the force that the particle exerts on 
itself. To find it, one should take the fields E and H at R = 0, and substitute the cor- 
responding expressions into the right-hand side of the Lorentz equations of motion 
of the particle 

= e ( E + u x H ) .  

In the series (23) the terms withj  = 0, 1 diverge when R -+ 0 because they contain 
R - ,  and R - ‘  respectively. They correspond to the divergent self-energy of the particle 
and have to be eliminated with the help of an appropriate renormalization of mass. 
The terms E ,  and H ,  do not contain R at all (they are proportional to Ro) and remain 
finite when R -+ 0. Making use of (23), it is easy to see that they are 

The other terms in the series with j > 2 contain positive powers of R and vanish 
when R -+ 0 (at the centre of the particle). 

The unit vector n which is the ratio R / R  becomes indefinite at the limit R -+ 0. The 
simplest possible assumption about it is that it is zero for an isotropic particle. Thus 
if we omit all terms in (29) that contain R (ie n), we get 

E,(R -+ 0) = e(+C:i) ++C$), 

H , ( R - + O ) =  e ( ~ C : u x U + $ C ~ u x i j ) =  u x E , .  

It follows from (24) that 

c; = R,. 1 an, c’ = - -U, 
2 d u  

so that the field can be expressed in terms of the function R, only which according to 
(25) is 

where we again put z = y(n . U )  = 0 because of our assumption that n = 0 when R -+ 0. 
Substitution into (30) yields in the following final expression for the field : 

2e 
3 E ,  = -y4[ij+3~’U(b.  U ) ] ,  H ,  = V X E , .  

and for the Lorentz force of the self-action 

(32) 
2e2 

3 
F = - y4 [ij + U x ( U  x ij)] + 2e2y6(u . U )  [U + U x ( U  x U)]. 

The expression (32) coincides with the spatial components of the four-vector of 
the radiation reaction in classical relativistic electrodynamics and it can easily be 
written in a covariant form. Neither the result itself nor the method of derivation is 
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new, but usually in this way one arrives at an approximate expression for the reaction 
(eg Page and Adams 1931), and not at the exact relativistic formula (32). 

The general expressions (23) are also useful when considering a system of two 
interacting particles. The two-body problem has no exact solution in the relativistic 
case because of the infinite number of degrees of freedom of the radiated electromagnetic 
field. Therefore, in considering such a system one usually has to resort to some approxi- 
mations. However, unlike the usual approaches, we are now interested in the case of 
arbitrarily fast particles and cannot exploit the smallness of the ratio v/c  and perform 
expansions in powers of this parameter. This is important, for instance, in the relativistic 
generalization of Boltzmann’s collision integral. 

Fortunately, there exists another parameter, proportional to e’, which allows one 
to use expansions in series without any restriction on the magnitude of the velocity. 
Indeed, the fields E and H of a particle are proportional to its charge e. On the other 
hand, according to the equations of motion (28), acceleration is defined by the Lorentz 
force which is also proportional to the charge. Therefore, the acceleration (of any 
‘order’) contains a small parameter eZ/mcZRmin, where Rmin is the minimum separation 
of the interacting particles. For the possibility to restrict oneself to the non-quantal 
theory this separation should exceed the Compton wavelength h/mc. This means that 
in a non-quantal theory this parameter is very small 

e’ e2 mc e’ 1 
a =  

mc’ Rmin 
< - 

mc’ 
- = - = - < < I  
h hc 137 

In the zeroth approximation in this parameter, one has to omit in the expansion 
(23) all the terms containing accelerations since they are of the first order in a. In this 
approximation the field of the particle coincides with the field (27) of the charge in 
uniform motion with the same velocity, though the acceleration may not be zero but 
just does not influence the field. 

In the first approximation one should keep in the expansion (23) only those terms 
which are linear in accelerations of all orders and ignore their products. This yields 
in considerably simplified forms the formulae (24). Moreover, the accelerations in 
these expressions should be calculated by means of successive differentiations of the 
equations of motion (28) with respect to time, but now in the right-hand side of these 
equations the fields Eo and Ho should be used, because the terms with j > 0 contain 
accelerations and are of higher order in the parameter a. 

The radiative reaction force (32) should be taken into account only in the second 
(and higher) approximation in the parameter a. 

Thus one can develop a classical perturbation theory that takes the influence of 
the radiation field on the motion of the particles into account, but does not introduce 
additional degrees of freedom for it. 

4. Conclusion 

The formulae (22) together with (18), and (23) together with (24) and (25), give the desir- 
able expressions for the fieldof a particle in arbitrary motion in terms of its simultaneous 
characteristics. These expressions contain time derivatives of all otders of velocity v 
of the particle, so that the state of the particle together with its field is to be specified 



1056 A N Gordeyet‘ 

in a phase space of an infinite but numerable set of variables {x, v, 8,. . . , i, . . .}. 
These expressions being written in a non-covariant form nevertheless have ‘correct’ 

properties under Lorentz transformations. They can be written, if desirable, in terms 
of the covariant derivatives of the four-velocity of the particle with respect to its proper 
time. 

Since we deliberately restrict the consideration to the limits of the classical electro- 
dynamics, all the known difficulties of the theory are present here. In particular, this 
approach gives nothing new with respect to the divergence of the self-energy of a charged 
particle. 

However, in the author’s opinion, this consideration is justified by the possibility 
to develop a relativistic statistical mechanics with the help of the expressions derived 
for the fields. These expressions may also be helpful in the classical electrodynamics 
and even for ‘quantization’ of electromagnetic field. They may be used as a starting 
point for interesting speculations about the equations of motion of a charged particle 
alternative to the Wheeler and Feynman (1945, 1949) theory. 

Appendix. Transformation of the expression (13) for t$k 

According to the general idea to avoid expansions in powers of U, let us isolate the cor- 
responding series in the expressions (13) for f $ k .  The first terms in the sum (13) are 

vm CO a m R m  + k -  1 

1 ( - 1 ) 2 m  a p  2 
m = O  

a m - l R m + k - l  , , m - 2 ~  

2 !(m - 2)! m = 2  

A rearrangement of the indices of the summations permits one to present (A.l) in the 
following form : 

where we have introduced a new notation 

@kR> = mzo cc d m R m i k  um 

The scalar quantities $,.(R,u), introduced in (A.2), are functions of the vector 
R = x - x ( t )  from the charge to the point of observation, and the vector of velocity 4t) 
of the particle. To find compact expressions for them, let us consider the field of a charge 
in uniform motion when 

4 . .. 
U = U = . . .  = v =  0. 

In this case the general expressions (9) and (10) are certainly valid as well, and that 
for the scalar potential becomes : 

On the other hand, for the uniform motion the potential f$ can be expressed in 
terms of the simultaneous position and velocity of the particle in the form (16). Com- 
parison of (A.3) with (16) shows that 

= { R [ l - t ’ 2 + ( n .  v ) 2 ] 1 ’ y .  (A.4) 
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and this expression remains the same in the general case for a motion with a varying 
velocity, because $k are independent of acceleration. 

With the help of ( A 4  one can find the other $k for k = 0,1 ,2 , .  . . . Note, that from 
(A.2) one gets 

if the partial derivative with respect to R is taken at v = constant and vice versa. From 
(A.5) one sees that 

Since the differentiation with respect to v does not change the dependence on R, 
and since from (A.4) one sees that $ - 1  - R - ' ,  it is easy to conclude that $k - Rk 
and put 

$,,, = Rm@,(n, 4, 64.6) 

where 

mth derivative of the product of two functions R2 and R m + k - 2 ,  and notes that 

are scalar functions of their arguments. 
If one writes d"R"+k/aR" in (A.2) as am(R2Rmtk-2)/aR", uses the formula for the 

-- - 0 a2R2 d2R2 a"R2 
aR" (m > 2), - 2R, -a-= 26ij5 

aR2 -- 
aR aR2 aR,aR, 

one arrives at the following equation for $k : 

$k = R2$k-2+2(R.  b)$k-1+v2$k. 

Making use of (A.6), one obtains a recurrence relation for @ k  : 

(1 - U 2 ) @ ,  = a k - 2  + 2(n. U)@.,- 1 * (A.7) 

To find all @ k  from this relation, one needs to know only two of them, say 0- and 
@ -  2 .  One of the functions @ -  has been defined in (A.4). The second can be found if 
one uses (AS) for $- 

a $ - 2  1 a @ - ,  -=--=- av ~2 aU aR ' 

The solution to this simple differential equation, with the right-hand side defined 
by differentiation of (A.4) with respect to R,  is 

n . v  
= 1 -  

[ 1 - U 2  +(n . v ) 2 ] 1 / 2 '  

The constant of integration here has been defined from the condition that, for a particle 
at rest, the potential should take its usual Coulomb form. 

Now, it is useful to introduce instead of @ k  some new functions M , ,  defined by the 
relations 
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where y = ( 1  -u’)-li’, and a new variable 

n .  u z =  

In this notation (A.7) becomes 

= y(n . U) = n . U. 
(1 - v2)”’ 

M k + 2  = 2 z M k + l + M k  

This recurrence relation is satisfied by 

M k  = Q m M k - m + Q m - l M k - m - , ,  

where the polynomials Q, are 

E(m/2)  being the integral part of 4 2 .  

of derivatives of y : 
Straightforward differentiation convinces one that the Q ,  can be expressed in terms 

nm a m y 2  
m !  a v m  ym+’m! ao“ 

(1 - U’) [n(l - U ’ ) ’ / ’ ] ~  am(l -U’)- ’ - 
Qm = 

Substitution for Q ,  from (A.ll) into (A.10) when m = k gives 

Mk = Q k M o + Q k - i M - i ,  

(A.ll)  

(A. 12) 

where M O ,  M - , have been found with the aid of (A.4), (A.8) and (A.7). 
According to (A.12), the functions @ k + 2  and @ k +  can be expressed in terms of 

derivatives of @ k  with respect to velocity U, and the same is true for M k .  Therefore, 
the recurrence equation (A.9) can be written in the form of a differential equation for 
Mk as follows 

A general solution to the equation is 

(A. 1 3 )  

(A. 14) 

where a new variable y = z/(l +z2)li’  has been introduced. When k = -2. - 1, these 
M k  should coincide with the functions M - and M - that have been already found in 
(A.4) and (A.8). The comparison of(A.14) with these expressions shows that the constants 
A ,  and A, should be chosen to be A, = 0, A ,  = 1 .  

Finally, the expression for M k ,  written in terms of the former variable z, is 

[ z + (1 + Z 2 ) l ” l k  + 

(1 +z’)l/’ ’ 

M ,  = (A.15) 



Electromagnetic j e l d  of a relativistic particle 1059 

The formulae (A.12) and (A.15) coincide with (21), if one notes the connection between 
M ,  and Ok. 
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